HATFIELD & DAWSON JAMES B. HATFIELD, PE BENJAMIN F. DAWSON III, PE THOMAS M. ECKELS, PE STEPHEN S. LOCKWOOD, PE DAVID J. PINION, PE PAUL W. LEONARD, PE ERIK C. SWANSON, EIT THOMAS S. GORTON, PE CONSULTING ELECTRICAL ENGINEERS 9500 GREENWOOD AVE. N. SEATTLE, WASHINGTON 98103 TELEPHONE (206) 783-9151 FACSIMILE (206) 789-9834 E-MAIL hatdaw@hatdaw.com Maury L. Hatfield, PE Consultant Box 1326 Alice Springs, NT 5950 Australia # Engineering Statement Digital Flash Cut Application for K17GK Channel 17 at Arlington, OR March 2008 This Engineering Statement has been prepared on behalf of Oregon Public Broadcasting, licensee of TV translator station K17GK at Arlington, Oregon. This material has been prepared in connection with an application for digital flash-cut. ## I. Allocation Study Study has been made of all cochannel and adjacent-channel facilities in the vicinity of the proposed operation, including a detailed Longley-Rice interference study to demonstrate that the proposed operation will not cause interference to any facilities with which contour overlap exists. This study was performed using the SunDTV program from V-Soft Communications and a 1 km grid spacing. The SunDTV program identically duplicates the FCC's OET-69 processing program. The results of this study indicate that the proposed facility is predicted to cause zero additional interference to any of the listed stations. Based on the foregoing allocation and interference study, it is believed that the proposed facility can operate without risk of interference to other stations. #### Summary Study 2000 Census data selected TV INTERFERENCE and SPACING ANALYSIS PROGRAM Date: 03-20-2008 Time: 18:28:11 Record Selected for Analysis K17GK USERRECORD-03 ARLINGTON OR US Channel 17 ERP 0.3 kW HAAT 226. m RCAMSL 00553 m STRINGENT MASK Latitude 045-45-50 Longitude 0120-14-40 Status APP Zone 2 Border Dir Antenna Make usr Model USRPAT03 Beam tilt N Ref Azimuth 0. Last update Cutoff date Docket Comments Applicant Cell Size for Service Analysis 1.0 km/side Distance Increments for Longley-Rice Analysis 1.00 km Not full service station Facility meets maximum power limit | Azimuth | ERP | HAAT | 51.0 dBu F(50,90) | |---------|-------|-------|-------------------| | (Deg) | (kW) | (m) | (km) | | 0.0 | 0.004 | 33.0 | 4.4 | | 45.0 | 0.065 | 143.4 | 18.4 | | 90.0 | 0.286 | 393.1 | 37.1 | | 135.0 | 0.270 | 339.6 | 34.9 | | 180.0 | 0.286 | 291.8 | 33.6 | | 225.0 | 0.065 | 344.9 | 27.1 | | 270.0 | 0.004 | 233.7 | 11.4 | | 315.0 | 0.002 | 33.0 | 3.9 | | | | | | Contour Overlap to Proposed Station Contour Overlap Evaluation to Proposed Station Complete ## LANDMOBILE SPACING VIOLATIONS FOUND NONE Proposed facility OK to FCC Monitoring Stations Proposed facility OK toward West Virginia quite zone Proposed facility OK toward Table Mountian Proposed facility is within the Canadian coordination distance Distance to border = 359.7km Proposed facility is beyond the Mexican coordination distance Proposed station is OK toward AM broadcast stations # ****************** ### Start of Interference Analysis Proposed Station Channel Call City/State ARN 17 K17GK ARLINGTON OR USERRECORD03 ## Stations Potentially Affected by Proposed Station | Chan | Call | City/State | Dist(km) | | Application Ref. No. | | |----------|-----------------|------------------------|--------------|------------|----------------------|-----------------------------| | 14 | KRHP-LP | THE DALLES OR | 70.8 | LIC | BLTTL | -19950905IC | | 15
15 | K15EY | WASCO/HEPPNER OR | 24.1
88.5 | LIC
LIC | BLTT | -19980818JA
-20021227ABJ | | | KVVK-CA
KUNP | KENNEWICK WA | | _ | BLTTA | | | 16 | | LA GRANDE OR | 202.0 | LIC | BLCT | -20011221AAN | | 16 | | LA GRANDE OR | 202.0 | APP | BPCT | -19951207KH | | 16 | K16EM | PRINEVILLE, ETC. OR | 157.8 | LIC | BLTT | -20070809AAT | | 16 | KORS-CA | SALEM OR | 196.2 | STA | BSTA | -20050310AEV | | 16 | KORS-CA | SALEM OR | 196.2 | APP | BPTTA | -20040902AAJ | | 16 | K55FO | EAST WENATCHEE WA | 173.2 | CP | BPTT | -20060928AKP | | 16 | KORX-CA | WALLA WALLA WA | 162.5 | LIC | BLTTA | -20050202ADO | | 16 | KNDO | YAKIMA WA | 87.9 | CP | BPCDT | -19991027ACH | | 17 | K17ED | PAYETTE ID | 323.7 | LIC | BLTTL | -19980713JE | | 17 | K17HA | ASTORIA OR | 287.7 | LIC | BLTT | -20050616AAQ | | 17 | KABH-LD | BEND OR | 206.2 | CP | BDCCDTL | -20061025ADR | | 17 | K17IJ-D | BUTTE FALLS OR | 400.2 | CP | BDCCDTT | -20061030AHC | | 17 | K17DU | CHRISTMAS VALLEY OR | 293.2 | LIC | BLTTL | -19970505JE | | 17 | KWVT-LP | EOLA OR | 242.5 | LIC | BLTTL | -20071005ADR | | 17 | KWVT-LP | EOLA OR | 242.5 | APP | BSTA | -20070626ARA | | 17 | KMTR | EUGENE OR | 283.7 | LIC | BLCDT | -20030618AAY | | 17 | K17GV | RAINIER OR | 206.2 | LIC | BLTT | -20070209ABT | | 17 | KWVT-LP | SALEM OR | 242.5 | CP | BPTTL | -20071119AKI | | 17 | K69BE | ELLENSBURG, ETC. WA | 125.8 | CP | BDISTT | -20061002AEO | | 17 | KWSU-TV | PULLMAN WA | 265.4 | LIC | BLEDT | -20060726ATL | | 18 | К18НН | THE DALLES OR | 67.9 | LIC | BLTT | -20070622ABB | | 18 | K18AD | EAST WENATCHEE, ETC. W | | CP | BDFCDTT | -20060329AKH | | 18 | K18AD | EAST WENATCHEE, ETC. W | | LIC | BLTT | -19841203ID | | 18 | KEPR-TV | PASCO WA | 89.5 | LIC | BLCDT | -20070228ABD | | 19 | K63BZ | ELLENSBURG WA | 125.8 | CP | BDISTT | -20061002AEP | | 19 | KEPR-TV | PASCO WA | 89.5 | LIC | BLCT | -2582 | | 20 | K20EH | HOOD RIVER OR | 103.7 | LIC | BLTTL | -19940114JR | | 20 | K20EH | HOOD RIVER OR | 103.5 | CP | BPTTL | -20070815ABA | | 20 | K20ES | PENDLETON, ETC. OR | 96.0 | LIC | BLTTL | -19960301JC | | 24 | K24DX | PENDLETON, ETC OR | 96.0 | LIC | BLTTL | -19960301JB | | 24 | NEW | WARM SPRINGS OR | 130.9 | APP | BNPTTL | -20000831BZN | | 25 | K25FP | ELLENSBURG WA | 125.7 | LIC | BLTTL | -19971103IP | | 25 | KNDU | RICHLAND WA | 94.1 | LIC | BLCT | -19800708KE | | | | | | | | | Study of this proposal found the following interference $\operatorname{problem}(s)$: NONE. ## II. NIER Study OET Bulletin 65 Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields (Edition 97-01) states in part that: When performing an evaluation for compliance with the FCC's RF guidelines all significant contributors to the ambient RF environment should be considered...For purposes of such consideration, significance can be taken to mean any transmitter producing more than 5% of the applicable exposure limit (in terms of power density or the square of the electric or magnetic field strength) at accessible locations. As will be demonstrated below, the proposed operation of K17GK will produce less than 5% of the applicable exposure limit for both controlled and uncontrolled environments. Thus, the proposed facility is categorically excluded from the requirement of further study. Therefore, pursuant to §1.1307(b)(3) of the Commission's Rules no calculations are required for the other FM and TV facilities in the vicinity, and precise calculations are made only with regard to the levels from this proposal. The power density calculations shown below were made using the techniques outlined in OET Bulletin No. 65. "Ground level" calculations in this report have been made at a reference height of 2 meters above ground to provide a worst-case estimate of exposure for persons standing on the ground in the vicinity of the tower. The equation shown below was used to calculate the ground level power density figures from each antenna. $$S(\mathbf{m}W/cm^2) = \frac{33.40981 \times AdjERP(Watts)}{D^2}$$ Where: *AdjERP(Watts)* is the maximum lobe effective radiated power times the element pattern factor times the array pattern factor. *D* is the distance in meters from the center of radiation to the calculation point. Power density levels produced by the proposed facility were calculated for an elevation of 2 meters above ground (22 meters below the antenna radiation center). The worst case power density levels occur at depression angles between 45 and 90 degrees below the horizontal. The calculations in this report assume a worst-case relative field value of 0.150 at these angles, based on the manufacturer's vertical plane pattern for the horizontally-polarized Kathrein K723417 panel antenna array proposed in this application. This relative field value yields a worst-case adjusted average effective radiated power of 6.75 Watts at depression angles between 45 and 90 degrees below the horizontal. Assuming this power and the shortest distance between the antenna radiation center and 2 meters above ground level (i.e. straight down), the highest calculated power density from the proposed antenna alone occurs at the base of the antenna support structure. At this point the power density is calculated to be 0.5 μ W/cm², which is 0.15% of 327 μ W/cm² (the FCC maximum for uncontrolled environments at the Channel 17 frequency). These calculations show that the maximum calculated power density produced at two meters above ground level by the proposed operation alone is less than 5% of the applicable FCC exposure limit at all locations between 1 and 1000 meters from the base of the antenna support structure. Section 1.1307(b)(3) of the Commission's Rules excludes applications for new facilities or modifications to existing facilities from the requirement of preparing an environmental assessment when the calculated emissions from the applicants proposed facility are predicted to be less than 5% of the applicable FCC exposure limit. Therefore, the proposed facility is in compliance with Section 1.1301 et seq and no further analysis of non-ionizing radiation at this site is required in this application. Pursuant to OET Bulletin No. 65, all station personnel and contractors are required to follow appropriate safety procedures before any work is commenced on the antenna tower, including reduction in power or discontinuance of operation before any maintenance work is undertaken. The permittee/licensee in coordination with other users of the site must reduce power or cease operation as necessary to protect persons having access to the site, tower or antenna from radiofrequency radiation in excess of FCC guidelines. March 20, 2008 Erik C. Swanson