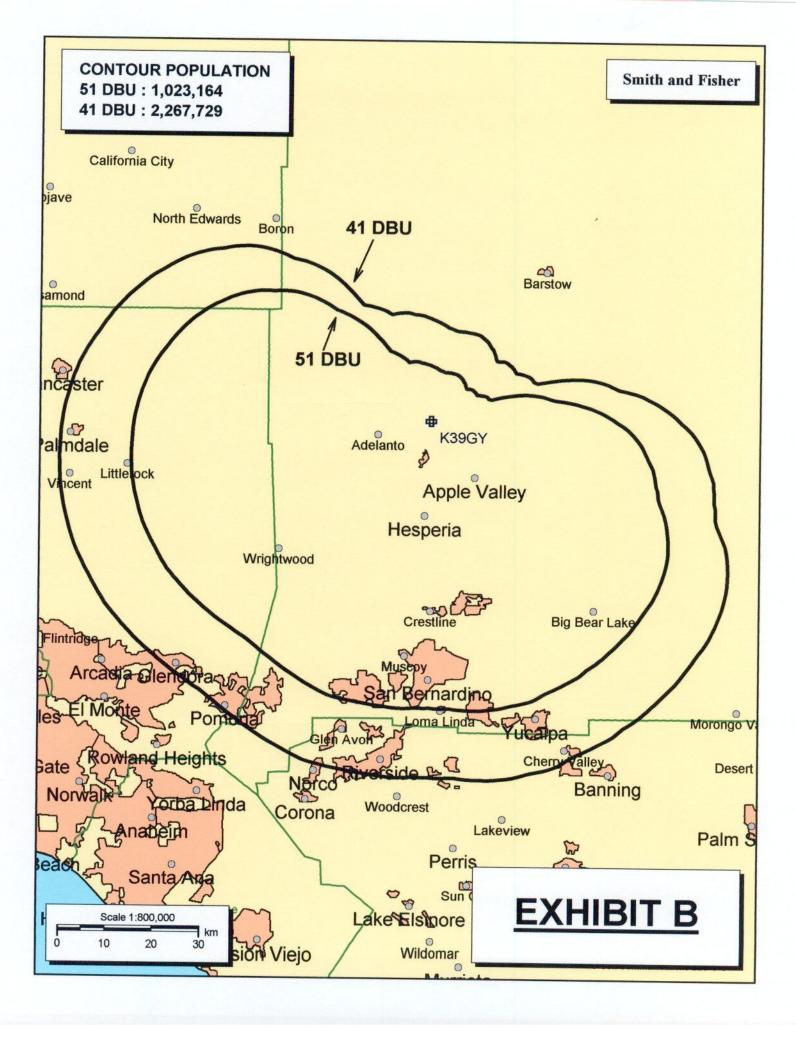
EXHIBIT A

ENGINEERING STATEMENT


The engineering data contained herein have been prepared on behalf of TRINITY BROADCASTING NETWORK, licensee of television translator K39GY, Channel 39 in Victorville, California, in support of this Application for Construction Permit to specify digital operation on Channel 39 from the licensed K39GY site, as a "flashcut" proposal.

It is proposed to utilize the licensed MCI directional antenna at the authorized height on the side of the existing 11-meter communications tower. Exhibit B is a map upon which the predicted service contours are plotted. It is important to note that the newly proposed 51 dBu contour encompasses a significant portion of the Grade A contour that obtains from the licensed K39GY facility. Operating parameters for the proposed facility are tabulated in Exhibit C. An interference study is provided in Exhibit D, and a power density calculation follows as Exhibit E.

Because no change in the overall height or location of the existing tower is proposed, the FAA has not been notified of this application. Due to the diminutive height of the tower and its proximity to the nearest airport runway, FCC antenna structure registration is not required. This conclusion is supported by the Commission's TOWAIR Program.

I declare under penalty of perjury that the foregoing statements and the attached exhibits, which were prepared by me or under my immediate supervision, are true and correct to the best of my knowledge and belief.

KYLE T. FISHER

EXHIBIT C

PROPOSED OPERATING PARAMETERS

PROPOSED K39GY-D CHANNEL 39 – VICTORVILLE, CALIFORNIA

Transmitter Power Output:	1.0 kw			
Transmission Line Efficiency:	94.0%			
Antenna Power Gain – Toward Horizon:	15.9			
Antenna Power Gain – Main Lobe:	15.9			
Effective Radiated Power - Toward Horiz	zon: 15 kw			
Effective Radiated Power – Main Lobe:	15 kw			
Transmitter Make and Model:	Type-accepted			
Rated Output	1.0 kw			
Transmission Line Make and Model:	Andrew HJ7-50A			
Size and Type:	1-5/8" air heliax			
Length:	50 feet			
Antenna Make and Model:	MCI 955312			
Orientation	210 degrees true			
Beam Tilt 0 degr				
Radiation Center Above Ground:	9 meters			
Radiation Center Above Mean Sea Le	evel: 1,381 meters			

EXHIBIT D-1

LONGLEY-RICE INTERFERENCE STUDIES PROPOSED K39GY-D CHANNEL 39 – VICTORVILLE, CALIFORNIA

We conducted detailed interference studies using the Longley-Rice methodology contained in the Commission's *OET Bulletin No.* 69, with respect to all facilities of concern. The software utilizes a 1-square kilometer cell size, calculates signal strength at 0.1 kilometer increments along each radial studied, and employs the 1990 U.S. Census to count population within cells. In addition, the program does not attribute interference to the proposed facility in cells within the protected contour of the station under study where interference from another source (other than proposed K39GY-D) already is predicted to exist (also known as "masking"). The results of these studies are provided in Exhibit D-2. They conclude that the facility proposed herein causes no significant new interference to any of the potentially affected stations.

As a result, it is believed that the proposed K39GY-D facility complies with the requirements of Sections 74.709, 74,793(e), 74.793(f), 74.793(g), 74.793(h), 74.794(b) and 73.1030 of the Commission's Rules.

EXHIBIT D-2

INTERFERENCE SUMMARY

PROPOSED K39GY-D CHANNEL 39 – VICTORVILLE, CALIFORNIA

Call Sign	Status	City, State	Ch.	Longley-Rice Service Population	Unmasked Interference From Proposed Facility	_%_	
KVEA-DT BLCDT-2003	Lic. 80507AAV	Corona, CA V	39	12,645,510	18,754	0.1	
KABE-LP BPTTL-2004	Appl. 1129BEG	Bakersfield, CA	39	362,130	17	<0.1	
KPXN-DT BMPCDT-200	Appl. 040727A	San Bernardino, CA	38	12,820,133	92	<0.1	

EXHIBIT E

POWER DENSITY CALCULATION

PROPOSED K39GY-D CHANNEL 39 – VICTORVILLE, CALIFORNIA

Since the FCC considers the possible biological effects of RF transmissions in its environmental determinations, we have studied the matter with respect to this Victorville facility. Employing the methods set forth in *OET Bulletin No. 65* and considering a main-lobe effective radiated power of 15 kw, an antenna radiation center 9 meters above ground, and the vertical pattern of the MCI antenna, maximum power density two meters above ground of 0.12 mw/cm² is calculated to occur 7 meters southwest of the base of the tower. Since this is only 5.8 percent of the 2.1 mw/cm² reference for controlled environments (areas without public access) surrounding a facility operating on Channel 39 (620-626 MHz), and since the site is secured from unauthorized access, a grant of this proposal may be considered a minor environmental action with respect to public exposure to ground-level nonionizing electromagnetic radiation.

Further, the station owner will take whatever precautionary steps are necessary, such as reducing power or leaving the air temporarily, to ensure that workers operating in the vicinity of the antenna are not exposed to excessive nonionizing radiation.