APPLICATION FOR MINOR MODIFICATION
TO A DTV PERMITTED BROADCAST
STATION FCC FILE NUMBER: BPEDT20080321AAK WNPB-DT
CHANNEL 33 ERP 615 KW (MAX-DA) AT
464 METERS AAT,
WEST VIRGINIA EDUCATIONAL
BROADCASTING AUTHORITY
MORGANTOWN, WEST VIRGINIA

ENGINEERING STATEMENT OF RYAN WILHOUR OF THE FIRM KESSLER AND GEHMAN ASSOCIATES, INC., CONSULTING ENGINEERS IN CONNECTION WITH AN APPLICATION FOR MINOR MODIFICATION OF A PERMITTED DTV BROADCAST STATION WNPB-DT FCC FILE NUMBER BPEDT-20080321AAK TO MAXIMIZE OPERATION IN THE POST DTV TRANSITION PERIOD WEST VIRGINIA EDUCATIONAL BROADCASTING AUTHORITY MORGANTOWN, WEST VIRGINIA

PROCLAMATION OF ENGINEER

I, Ryan Wilhour, am an associate of Kessler and Gehman Associates, Inc. with offices in Gainesville, Florida. I am a graduate of the University of Florida with a Bachelor of Science degree in electrical engineering. This firm has been employed by West Virginia Educational Broadcasting Authority ("WVEBA") to prepare engineering studies and a minor modification application to FCC file number BPEDT-20080321AAK for post DTV transition maximization.

ATTACHED FIGURES

In carrying out the engineering studies the following attached figures were prepared:

- 1. Engineering Specifications (Exhibit E1)
- 2. Elevation drawing of the antenna system (Exhibit E2)
- 3. USGS 7.5 minute topographic quadrangle showing the proposed transmitter location and the coordinate lines (Exhibit E3)
- 4. Antenna azimuth and elevation patterns (Exhibit E4)
- 5. Map showing the predicted DTV coverage contour (Exhibit E5)
- 6. Allocation Analysis (Exhibit E6)
- 7. Environmental Impact/ RFR Hazard Analysis (Exhibit E7)

NARRATIVE

WVEBA non-commercial licensee of WNPB-DT proposes to operate its post-transition Channel 33 digital facility using the existing support structure. The instant application proposes to replace the permitted top mounted antenna which will increase the effective center of radiation by 7.5 meters and change the antenna pattern. It is also proposed to increase the ERP from 92 kW to 615 kW to effectively maximize.

ALLOCATION ANALYSIS

It is proposed to modify WNPB-DT to maximize its coverage area without causing impermissible interference to other post DTV transition facilities. Exhibit E6 demonstrates the interference considerations for the proposed facility and further illustrates complete compliance to the 0.5% interference threshold criteria.

ENVIRONMENTAL IMPACT/RFR HAZARD ANALYSIS

An analysis has been made of the human exposure to RFR using the calculation methodology described in OET Bulletin 65, Edition, 97-01. Exhibit E7 is a RFR study demonstrating compliance within 5% of the most restrictive permissible exposure at any location 2 meters above the ground. Exhibit E7 calculations were made using a frequency of 584 MHz, which is the lower edge of the proposed channel. To account for ground reflections, a coefficient of 1.6 was included in the calculations.

Pursuant to OET Bulletin 65 concerning multiple-user transmitter sites only those licensees whose transmitters produce power density levels greater than 5.0% of the exposure limit are considered significant contributors to RFR. Since the proposed operation is well within 5% of the most permissible exposure at any location 2 meters above the ground, it is not considered a significant contributor to RFR exposure. Thus, contributions to exposure from other RF sources in the vicinity of WNPB-DT were not taken into account. The instant proposal complies with the FCC limits for human exposure to RF radiation and thus is excluded from further environmental processing.

KESSLER AND GEHMAN ASSOCIATES, INC.

PAGE 3

DECLARATION OF ENGINEER

The foregoing statement and the report regarding the aforementioned engineering work are true and correct to the best of my knowledge. Executed on June 13, 2008.

Ryan Wilhour

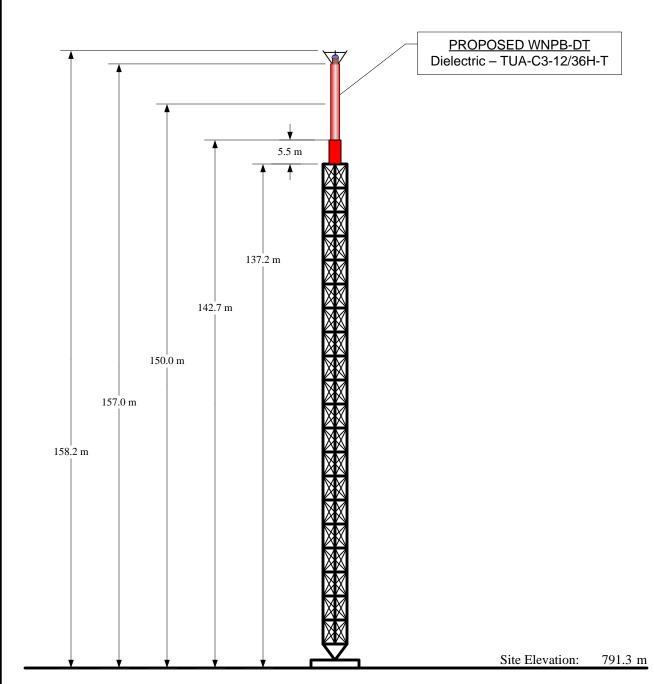
Consulting Engineer

yan willows

WNPB-DT MORGANTOWN, WEST VIRGINIA

ENGINEERING SPECIFICATIONS

A.	Transmitter Site (NAD 27)					
		North Latitude	39° 4	41 '44.7 "		
		West Longitude	79° 4	45 ' 44.8 "		
	Street Address or Location	O				
		Sand Spring				
		Morgantown, WV				
B.	Proposed Facility					
	DTV Channel					
		Number	33			
		Frequency	584-590	MHz		
C.	Antenna Height					
	Height of Site Above Mean Sea Level (AMSL)		791.3	m		
	Overall Height of Structure A	Above Ground	158.2	m		
	(including all appurtenances)					
	<u> </u>	eight of Structure Above Mean Sea Level		m		
	(including all appurtenances)					
		Effective Height of Antenna Above Ground		m		
	9	tive Height of Antenna Above Average Terrain		m		
	Effective Height of Antenna	941.3	m			
D.	Antenna Parameters – Horizontal Polarization					
	Maximum Antenna Gain in Beam Maximum		16.94	dB		
	Maximum Antenna Gain in Horizontal Plane Maximum Effective Radiated Power			dB		
				dBk		
	In Beam Maximum	615.0	kW			
	Maximum Effective Radiated Power		25.99	dBk		
	In Horizontal Plane		397.1	kW		


KESSLER & GEHMAN
TELECOMMUNICATIONS CONSULTING ENGINEERS
507 N.W. 60th Street, Suite & Gainesville, Florida 32607

WNPB-DT

MORGANTOWN, WV

20080613

EXHIBIT E1

Overall Height AGL:	158.2 m
Overall Height AMSL:	949.5 m
Radiation Center AGL:	150.0 m
Radiation Center AMSL:	941.3 m
Radiation Center HAAT:	464.0 m
Average Terrain:	477.3 m

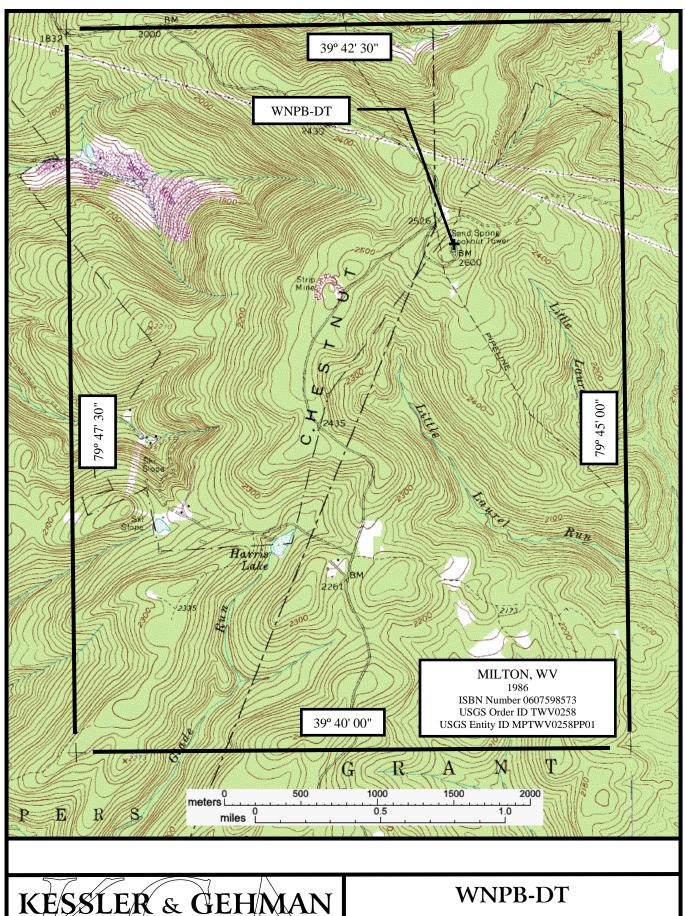
NAD 27 Coordinates:

N. Latitude: 39° 41' 44.7"

W. Longitude: 79° 45' 44.8"

FCC Tower Registration Number: 1035128

NOTE: NOT TO SCALE


KESSLER & GEHMAN

ELECOMMUNICATIONS CONSULTING ENGINEERS
507 N.W. 60th Street, Suite C
Gainesville, Florida 32607

WNPB-DT

MORGANTOWN, WV

20080613 EXHIBIT E2

KESSLER & GEHMAN

TELECOMMUNICATIONS CONSULTING ENGINEERS 507 N.W. 60th Street, Suite C Gainesville, Florida 32607

MORGANTOWN, WV 20080613 **EXHIBIT E3**

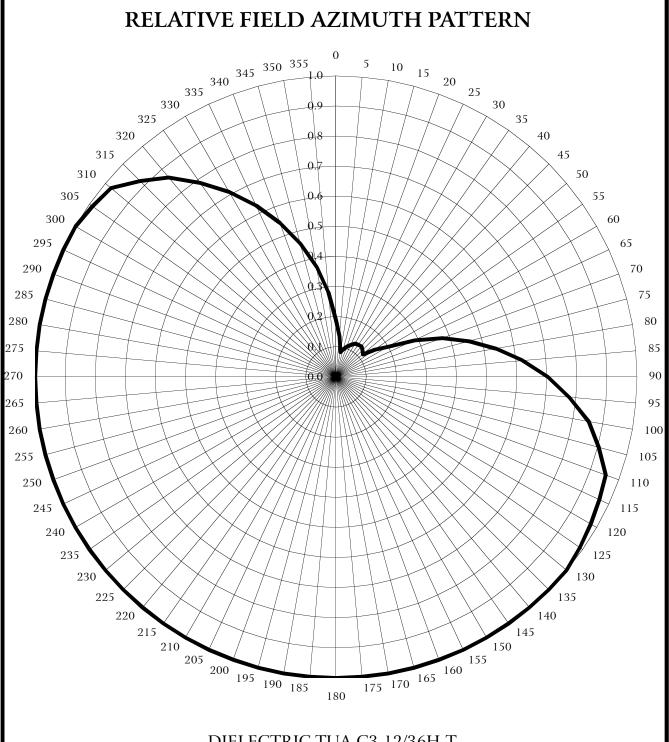
WNPB-DT

MORGANTOWN, WEST VIRGINIA

TABULATION OF RELATIVE FIELD FOR PROPOSED DIRECTIONAL ANTENNA

AZIMUTH	RELATIVE FIELD	AZIMUTH	RELATIVE FIELD
N000°E	0.189	N180°E	1.000
N010°E	0.083	N190°E	1.000
N020°E	0.108	N200°E	1.000
N030°E	0.128	N210°E	1.000
N040°E	0.132	N220°E	1.000
N050°E	0.117	N230°E	1.000
N060°E	0.200	N240°E	1.000
N070°E	0.377	N250°E	1.000
N080°E	0.540	N260°E	1.000
N090°E	0.704	N270°E	1.000
N100°E	0.853	N280°E	1.000
N110°E	0.954	N290°E	1.000
N120°E	0.978	N300°E	1.000
N130°E	1.000	N310°E	0.977
N140°E	1.000	N320°E	0.865
N150°E	1.000	N330°E	0.710
N160°E	1.000	N340°E	0.545
N170°E	1.000	N350°E	0.371

MAXIMUM OF 1.000 AT N130°E THROUGH N300°E MINIMUM OF 0.083 AT N010°E



WNPB-DT

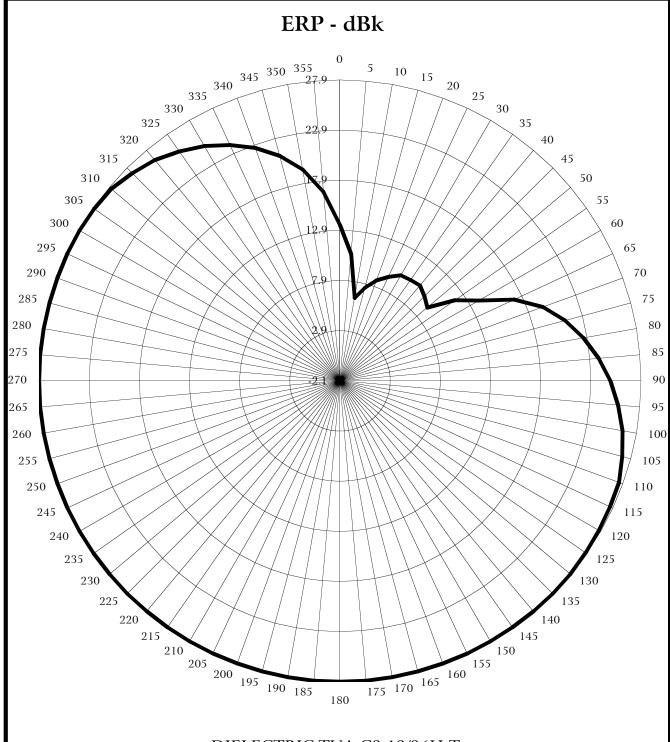
MORGANTOWN, WV

20080613

EXHIBIT E4A

DIELECTRIC TUA-C3-12/36H-T ORIENTED WITH BEAM MAXIMA AT 130° THROUGH 300° MAXIMUM GAIN: 1.90 (2.79 DB)

KESSLER & GEHMAN


TELECOMMUNICATIONS CONSULTING ENGINEERS

507 N.W. 60th Street, Suite C Gainesville, Florida 32607 **WNPB-DT**

MORGANTOWN, WV

20080613

EXHIBIT E4B

DIELECTRIC TUA-C3-12/36H-T ORIENTED WITH BEAM MAXIMA AT 130° THROUGH 300° MAXIMUM GAIN: 1.90 (2.79 DB)

KESSLER & GEHMAN

TELECOMMUNICATIONS CONSULTING ENGINEERS
507 N.W. 60th Street, Suite C
Gainesville, Florida \$2607

WNPB-DT

MORGANTOWN, WV

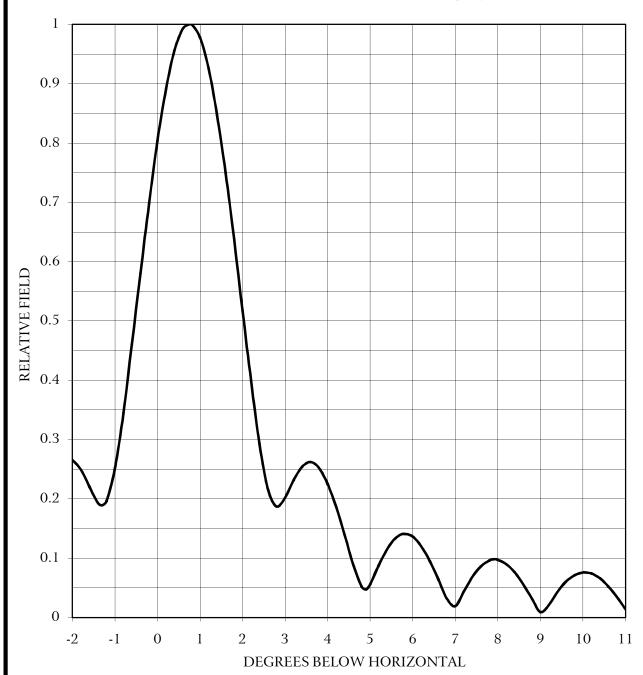

20080613

EXHIBIT E4C

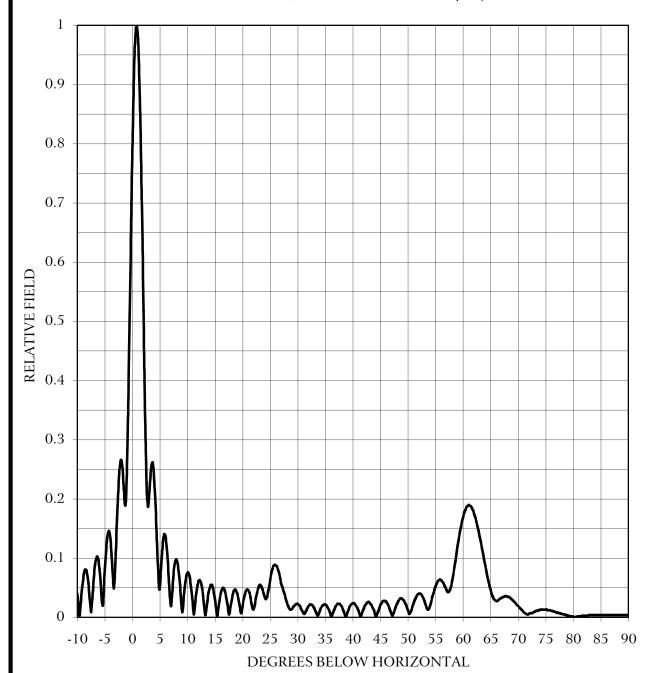
ELEVATION PATTERN

DIELECTRIC TUA-C3-12/36H-T

KESSLER & GEHMAN
TELEFORMUNICATIONS CONSULTING ENGINEERS

LECOMMUNICATIONS CONSULTING ENGINEERS
507 N.W. 60th Street, Suite C
Gainesville, Florida 32607

WNPB-DT

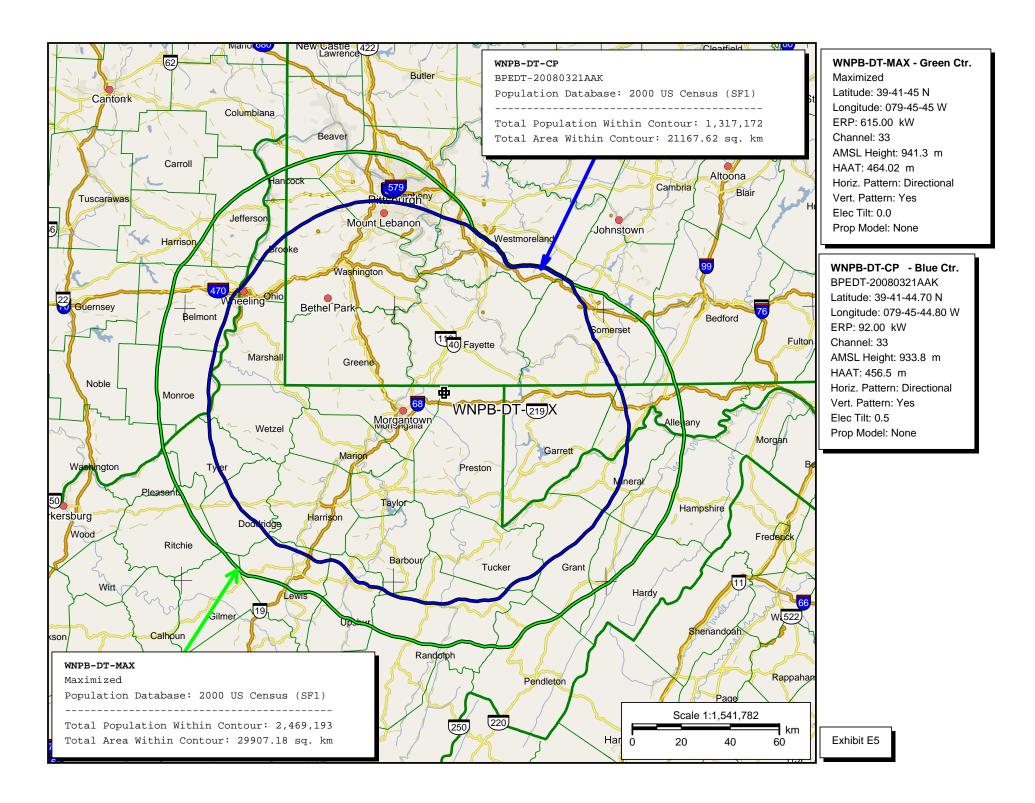

MORGANTOWN, WV

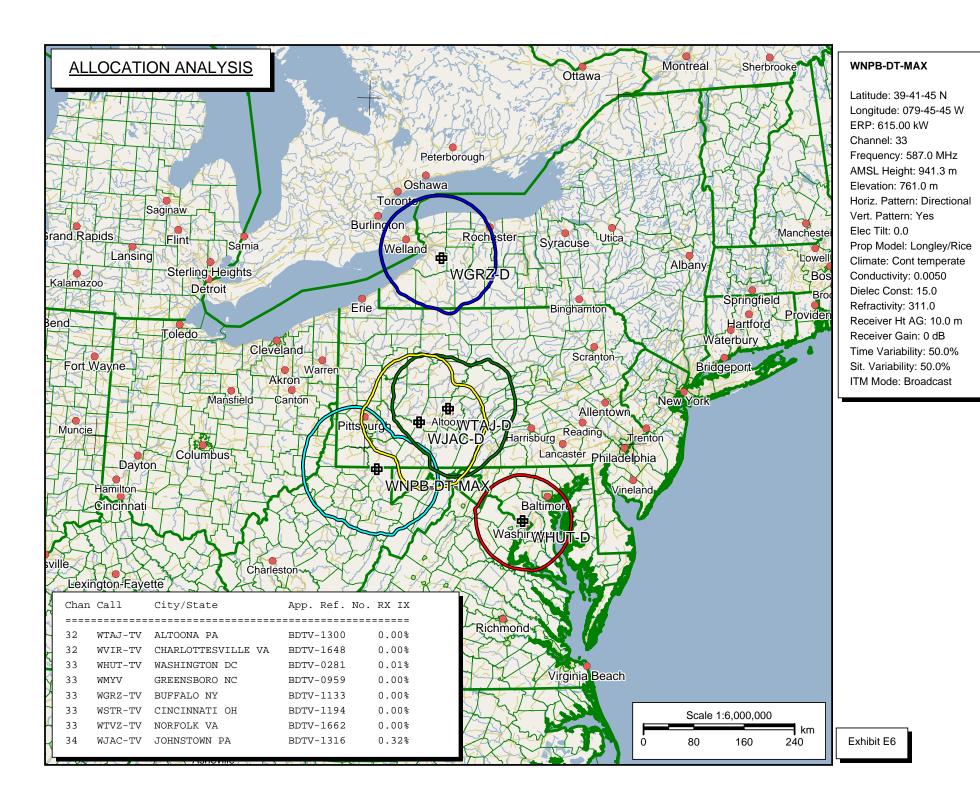
20080613 EXHIBIT E4D

ELEVATION PATTERN

DIELECTRIC TUA-C3-12/36H-T

KESSLER & GEHMAN


TELECOMMUNICATIONS CONSULTING ENGINEERS 507 N.W. 60th Street, Suite C


WNPB-DT

MORGANTOWN, WV

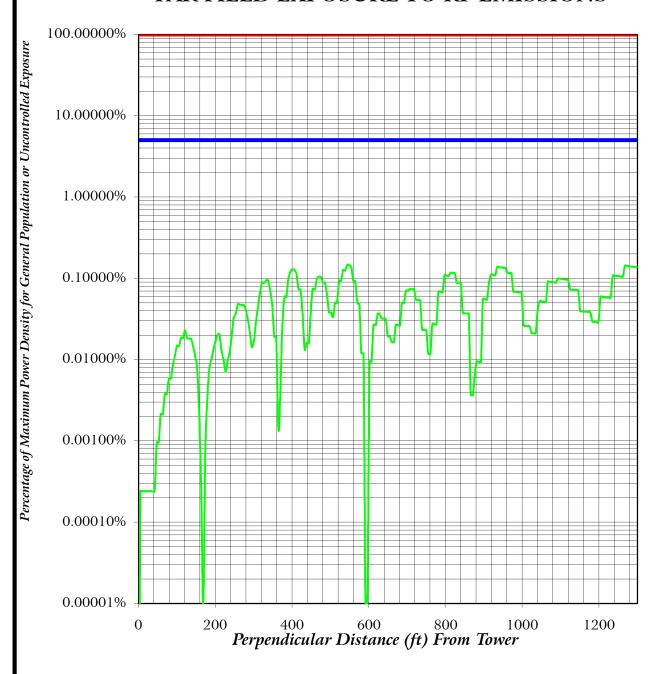

20080613

EXHIBIT E4E

FAR FIELD EXPOSURE TO RF EMISSIONS

—Maximum Allowable General Population or Uncontrolled Exposure

—5 % of Maximum General Population or Uncontrolled Exposure

—Percentage of Maximum General Population or Uncontrolled Exposure

KESSLER & GEHMAN

TELECOMMUNICATIONS CONSULTING ENGINEERS
507 N.W. 60th Street, Suite C
Gainesville, Florida 32607

WNPB-DT

MORGANTOWN, WV

20080613

EXHIBIT E7

METHODOLOGY AND EXPLANATION OF ENVIRONMENTAL IMPACT / RADIO FREQUENCY RADIATION HAZARD ANALYSIS

A theoretical analysis has been conducted of the human exposure to radio frequency radiation ("RFR") using the calculation methodology described in *OET Bulletin 65, Edition 97-01*. The RFR analysis is conducted pursuant to the following methodology:

Terrain¹ extraction is compiled from the proposed tower site to radial lengths of 0.25 miles in 0.001 mile increments for 360 radials. The power density is calculated for each terrain point at 6 feet above ground level using the elevation and azimuth pattern of the proposed broadcast antenna. The power density calculations are conducted using the lower edge of the proposed channel frequency. To account for ground reflections, a coefficient of 1.6 was included in the calculation.

The resulting cylindrical polar analysis is then summarized into a coordinate plane graph using the following methodology:

Starting from the origin the maximum calculated RFR value is determined among the 360 degree radials for each 0.001 mile increment, the value is then converted into a percentage of the maximum allowable general population or uncontrolled exposure and plotted as a function of perpendicular distance from the tower.

_

¹ Terrain extraction is based upon a 3 arc second point spacing terrain database.