HATFIELD & DAWSON THOMAS M. ECKELS, PE STEPHEN S. LOCKWOOD, PE DAVID J. PINION, PE ERIK C. SWANSON, PE THOMAS S. GORTON, PE JAMES B. HATFIELD, PE BENJAMIN F. DAWSON III, PE CONSULTANTS CONSULTING ELECTRICAL ENGINEERS 9500 GREENWOOD AVE. N. SEATTLE, WASHINGTON 98103 TELEPHONE (206) 783-9151 FACSIMILE (206) 789-9834 E-MAIL hatdaw@hatdaw.com > Maury L. Hatfield, PE (1942-2009) Paul W. Leonard, PE (1925-2011) ## Engineering Statement Minor Modification of KUMN-LP Channel 19 at Moses Lake, WA February 2019 This Engineering Statement has been prepared on behalf of Spokane Television, Inc. ("Spokane"), licensee of digital LPTV station KUMN-LD at Moses Lake, Washington. This material has been prepared in connection with an application for minor modification. ## I. Interference Study Study has been made of all cochannel and adjacent-channel facilities in the vicinity of the proposed operation, including a detailed Longley-Rice interference study to demonstrate that the proposed operation will not cause interference to any facilities with which contour overlap exists. This study was performed using the Commission's TVStudy software. Based on the results of this interference study, it is believed that the proposed facility can operate without risk of interference to other stations. | IX | Call | | Svc | Status | City, State
COEUR D'ALENE, ID | File Number | Distance | |-----|---------|-----|-----|--------|--|-------------------|----------| | No | KCDT | D18 | DT | CP | COEUR D'ALENE, ID | BLANK0000034666 | 234.9 km | | No | K18AD-D | | LD | LIC | EAST WENATCHEE, ETC., WA | BLDTT20100831ABA | 45.9 | | Yes | KEPR-TV | D18 | DT | APP | PASCO, WA | BLANK0000035749 | 143.6 | | Yes | KEPR-TV | D18 | DT | LIC | PASCO, WA | BLCDT20140717ABN | 143.6 | | No | KIRO-TV | D18 | LD | CP | PASCO, WA PASCO, WA SEATTLE, WA GRANGEVILLE, ETC,, ID | BLANK0000054680 | 164.4 | | No | K19BY-D | | LD | APP | GRANGEVILLE, ETC,, ID | BLANK0000064036 | 289.8 | | No | K19BY-D | D19 | LD | LIC | GRANGEVILLE, ETC,, ID | BLDTT20120615ADK | 289.8 | | No | K18HQ-D | | LD | CP | SANDPOINT, ID
HERMISTON, OR | BLANK0000051896 | 257.7 | | Yes | K19KP-D | | LD | LIC | HERMISTON, OR | BLANK0000055043 | 153.8 | | No | K46AK-D | D19 | LD | CP | PRINEVILLE, ETC., OR | BLANK0000054538 | 332.6 | | No | K50GG-D | D19 | LD | CP | SALEM, OR
BELLINGHAM, WA
BELLINGHAM, WA | BLANK0000053826 | 365.4 | | No | KBCB | | DT | APP | BELLINGHAM, WA | BLANK0000035650 | 272.0 | | No | KBCB | D19 | DT | LIC | BELLINGHAM, WA | BLCDT20040128AKD | 272.0 | | No | KCKA | | | APP | CENTRALIA, WA | BLANK0000035737 | 261.4 | | No | KCKA | | | LIC | CENTRALIA, WA | BLEDT20101217ABA | 261.4 | | Yes | K44CK | D19 | LD | CP | CHELAN, WA
MAZAMA, WA | BLANK0000053161 | 76.9 | | No | K19JC-D | D19 | LD | LIC | MAZAMA, WA | BLDTT20120614ABX | 140.7 | | Yes | K19AU-D | D19 | LD | LIC | OMAK, OKANOGAN, ETC., WA | BLDTT20110727AHT | 132.3 | | Yes | K19KU-D | D19 | LD | LIC | WALLA WALLA, WA
YAKIMA, WA | BLANK0000059178 | 203.0 | | Yes | K19JX-D | D19 | LD | LIC | YAKIMA, WA | BLDTL20141016ADC | 103.1 | | No | K20JL-D | D20 | LD | LIC | ELLENSBURG, ETC., WA | BLDTT20090506ACI | 68.3 | | No | K20KG-D | D20 | LD | LIC | PASCO, WA | BLDTL20140224ABY | 126.1 | | No | K23KI-D | D20 | LD | CP | Seattle, WA | BLANK0000052239 | 180.1 | | Yes | KREM | D20 | DT | LIC | SPOKANE, WA | BLCDT20050623ABG | 190.5 | | Yes | K20LY-D | D20 | LD | CP | WENATCHEE, WA | BNPDTL20100624ABA | 37.2 | | No | K20LQ-D | D20 | LD | LIC | PASCO, WA Seattle, WA SPOKANE, WA WENATCHEE, WA YAKIMA, WA | BLDTT20141016ADB | 103.1 | No non-directional AM stations found within 0.8 $\ensuremath{\text{km}}$ No directional AM stations found within $3.2\ km$ Record parameters as studied: Channel: D19 Mask: Stringent Latitude: 47 19 12.70 N (NAD83) Longitude: 119 48 4.80 W Height AMSL: 893.1 m HAAT: 0.0 m Peak ERP: 2.00 kW Antenna: SCA-2X2KBBU 118.0 deg Elev Pattrn: Generic 49.3 dBu contour: Azimuth ERP HAAT Distance 265.9 m 24.7 km 211.4 38.2 193.9 38.7 0.0 deg 0.042 kW 0.946 45.0 1.26 90.0 135.0 180.0 455.1 49.7 1.14 1.59 479.9 52.5 225.0 0.112 434.9 35.0 270.0 0.021 329.7 23.2 315.0 0.005 283.1 Database HAAT does not agree with computed HAAT Database HAAT: 0 m $\,$ Computed HAAT: 332 m $\,$ Proposal 24.25 dBu contour does not cross Canadian border Distance to Canadian border: $186.7 \ \mathrm{km}$ Distance to Mexican border: 1649.2 km Conditions at FCC monitoring station: Ferndale WA Bearing: 312.7 degrees Distance: 273.4 km ``` Proposal is not within the West Virginia quiet zone area Conditions at Table Mountain receiving zone: Bearing: 119.1 degrees Distance: 1410.5 km No land mobile station failures found Study cell size: 1.00 km Profile point spacing: 1.00 km Maximum new IX to full-service and Class A: 0.50% Maximum new IX to LPTV: 2.00% No IX check failures found. ``` ## II. RF Exposure Study The power density calculations shown below were made using the techniques outlined in OET Bulletin No. 65. "Ground level" calculations in this report have been made at a reference height of 2 meters above ground to provide a worst-case estimate of exposure for persons standing on the ground in the vicinity of the tower. The equation shown below was used to calculate the ground level power density figures from each antenna. $$S(\mu W / cm^2) = \frac{33.40981 \times AdjERP(Watts)}{D^2}$$ Where: *AdjERP(Watts)* is the maximum lobe effective radiated power times the element pattern factor times the array pattern factor. *D* is the distance in meters from the center of radiation to the calculation point. Power density levels produced by the proposed facility were calculated for an elevation of 2 meters above ground (12.1 meters below the antenna radiation center). The worst case power density levels occur at depression angles between 45 and 90 degrees below the horizontal. The calculations in this report assume a worst-case relative field value of 0.125 at these angles, based on the manufacturer's vertical plane pattern for the horizontally-polarized 2X2 Kathrein broadband panel antenna array proposed in this application. This relative field value yields a worst-case adjusted average effective radiated power of 31.25 watts at depression angles between 45 and 90 degrees below the horizontal. Assuming this power and the shortest distance between the antenna radiation center and 2 meters above ground level (i.e. straight down), the highest calculated power density from the proposed antenna alone occurs at the base of the antenna support structure. At this point the power density is calculated to be 7.1 μ W/cm², which is 2.1% of 333.3 μ W/cm² (the FCC maximum for uncontrolled environments at the Channel 19 frequency). These calculations show that the maximum calculated power density produced at two meters above ground level by the proposed operation alone is less than 5% of the applicable FCC exposure limit at all locations between 1 and 500 meters from the base of the antenna support structure. Section 1.1307(b)(3) of the Commission's Rules excludes applications for new facilities or modifications to existing facilities from the requirement of preparing an environmental assessment when the calculated emissions from the applicants proposed facility are predicted to be less than 5% of the applicable FCC exposure limit. Therefore, the proposed facility is in compliance with Section 1.1301 *et seg* and no further analysis of RF exposure at this site is required in this application. Pursuant to OET Bulletin No. 65, all station personnel and contractors are required to follow appropriate safety procedures before any work is commenced on the antenna tower, including reduction in power or discontinuance of operation before any maintenance work is undertaken. The permittee/licensee in coordination with other users of the site must reduce power or cease operation as necessary to protect persons having access to the site, tower or antenna from radiofrequency exposure in excess of FCC guidelines. February 7, 2019 Erik C. Swanson, P.E.